
NASA-CR-200930
/('/ i.) -, . i.

Multi-Dimensional Trees for

Controlled Volume Rendering and Compression -

Extended Abstract

Jane Wilhelms and Allen Van Gelder

University of California, Santa Cruz

Abstract

This paper explores the use of multi-dimensional trees to
provide spatial and temporal efficiencies in imaging large
data sets. Each node of the tree contains a model of the data
in terms of a fixed number of basis functions, a measure of
the error in that model, and a measure of the importance of
the data in the region covered by the node. A divide-and-

conquer algorithm permits efficient computation of these
quantities at all nodes of the tree. The flexible design
permits various sets of basis functions, error criteria, and
importance criteria to be implemented easily.

Selective traversal of the tree provides images in accept-
able time, by drawing nodes that cover a large volume as

single objects when the approximation error and/or im-
portance are low, and descending to finer detail otherwise.
Trees over very large datasets can be pruned by the same
criterion to provide data representations of acceptable size
and accuracy. Compression and traversal are controlled

by a user-defined combination of modeling error and data
importance. For imaging decisions, additional parameters
are considered, including grid location, allowed time, and
projected screen area. To analyse results, two evaluation
metrics are used: the first compares the hierarchical model
to actual data values, and the second compares the pixel

values of images produced by different parameter settings.

1 Introduction

As computers and algorithms improve so do our expec-
tations of the kind and quality of images that can be

produced. In scientific visualization, many data sets are

larger than can be visualized in a comfortable amount
of time, or even can be read into the available memory.

The research described here explores the use of multi-
dimensional trees to deal with both the spatial and

temporal aspects of this problem.
Our particular problem area is visualization of sam-

pled k-dimensional scalar data arranged on a regular

grid. Our visualization method is direct volume ren-
dering. However, we believe the data representation

paradigm we use is applicable to more general multivari-
ate and non-rectilinear data sets, and also can provide

useful insights into the imaging of any large database.

Our approach is to build a space-efficient hierarchy

over the data, each node of which contains three types
of information: a model of the data below it; error

and evaluation information for selective traversal; and

structural information. The user defines acceptable

tolerances for evaluation parameters, and selective

traversal of the tree defines that part of the hierarchy
within those tolerances. Nodes beneath this selected

subset of the tree can be pruned, resulting in an

alternate, often more succinct, representation of the

data. For imaging, the shallowest regions of the selected
tree that lie within the tolerances are drawn.

We have found that selective traversal produces

images that are subjectively and quantifiably very
close to those produced using the entire data set, and

significantly faster. It provides an extremely flexible
tool for creating error-controlled images in acceptable

time. Furthermore, by storing the selected portion of

the tree, the method can also provide data compression.

This article is necessarily somewhat abbreviated; a more
detailed discussion occurs in a technical report [WG94].

2 Background and Related Work

Work most closely related to ours is that concerned

with hierarchical data structures for controlled imaging,

algorithms for fast volume rendering, and methods for

dealing with large data sets.

Meagher did some of the earliest work in representing

3D data using octrees [Mea82], and many variations

have appeared since. Levoy used a binary octree
to avoid regions whose data was transparent [Lev90].
Wilhelms and Van Gelder used a max-min octree to

avoid regions not intersecting the desired isosurface, and

presented a space-efficient subdivision strategy, called
branch on need (BON) [WVG92]. This paper extends

octrees and the BON strategy to k dimensions.

Laur and Hanrahan build an octree over voxels, and

compute the data mean and root mean square error

(RME2) at each node [LH91]. This permits volume

rendering by progressive refinement, the user specifying



an error tolerance. Nodeswith RME2within the
tolerancearerenderedassingle"splats". Our work
buildsuponthat paper,andextendsit in severalways.
Datamodelsotherthanthemeanaresupported,and
computedin constanttime per node(Section3.3).
Voxelandcellconventionsaresupported.Errormetrics
basedonLq norms are supported (Section 4.3.1); RME2
corresponds to the L2 norm. Errors can be weighted by

an "importance" function (Section 5). We have also

quantified image differences (Section 8.2).
Funkhauser and Sequin used a hierarchy for gaining

consistent frame rate for complex viewing environment

[FS93]. They also used a weighted combination of

parameters to control imaging.

Other than using hierarchies, speed gains for direct

volume rendering have been achieved by using voxel

splatting [Wes90], hardware-assisted projection [ST90,

LH91, WVG91], and preprocessing [Cha93, DFM87,

Wi192, VGW93]. Preprocessing, however, often creates
large auxiliary data structures, which we are particu-

larly trying to avoid in the research presented here.
Our method of hierarchical data representation has

some similarities to wavelets and multi-resolution anal-

ysis [Ma189, Chu92, Mur93, GSCH93], but it has several

significant differences. For example, Muraki used multi-
resolution analysis to represent 3D volumes [Mur93]. In
constrast to our method, basis functions overlapped,
and the calculation of one function value involved as

many as 2000 basis functions.
Malzbender described efficient volume rendering us-

ing Fourier transforms [Mal93]. Levoy described a vari-

ation that included a lighting model [Lev92]. Neither

method can model opacity.

Ning and Hesselink [NH93] used vector quantization
to compress data sets for direct rendering. While this

approach gives very good compression, it is not as
flexible as a hierarchical model for imaging.

3 Hierarchical Data Models

This section describes the techniques to compute data

models and approximation errors at all nodes of a multi-

dimensional tree. Efficiency is achieved by computing
the model and error at each node in terms of those

values for the node's children. The set of basis functions

for the model is fixed for a given tree, but there is

considerable flexibility in choosing this set.

3.1 Notation

We will be using notation for k-dimensional space of

reals, R k. In general, bold face letters represent k-D
vectors. Thus, location in k-D space is denoted by x =

(xl,...,xk). In 3-D and 4-D we will often use (x,y, z)
and (x,y,z,t). A volume in R k is a rectangular k-D

parallelopiped, or closed interval denoted [Xmin, Xmaz].

voxel model cell model

Figure 1: A voxel is the region surrounding a data point,
whereas a cell is the region between data points.

That is, point x is in the volume if and only if Xrnin,j <__

xj <_ Xma_:,j for j = l,..., k. The width in dimension j

is denoted by wj = Xmax,j - Xmin,j; the width vector is
W.

The volumetric data is given as discrete samples on a

regular k-D grid of resolutions r = (rl,..., rk). Sample

data points are indexed by a k-D index p, where pj

runs from 1 to rj. The spacings of the data are Ax.

The relationship of the grid to xmin and Xmax depends
on whether we are using the voxel convention, or the

cell convention (see Figure 1).

In the voxel convention, wj =-- rjAxj, xmin5 =
1 1

--TrjAxj, and Xmax,j = -_rjAxj. Each voxel is centered
about its sample data point. In the cell convention,

1
wj = (rj -- 1)Axj, xmi_,j = -7(rj - 1)Axj, and

1
Xmaz,j = -_(rj - 1)Axj. Each cell is considered to have
sample data points at each of its corners. Sample data
values are denoted by g(p), and the data viewed as a

function throughout the volume is g(x).

3.2 Inner Products and Orthogonality

The derivation and error analysis of the hierarchical

representation rest upon the concept of inner product.

Typical inner products of interest are integrals over the
volume and sums over the grid points. We use inner

products to calculate a data model for a given a set of
basis functions, as well as an error term describing the
deviation of the model from the data.

For two functions f and g, defined on R k, and be-

longing to a suitable function space, let (f,g) denote

their inner product. An inner product on a volume
induces inner products on subvolumes by restriction, 1

Our implementation uses an integral-based inner prod-

uct. (Further background on this method are available

elsewhere [WG94]; here we present, hopefully, sufficient

information general understanding and for implementa-

tion.)
Now suppose we have a set B of basis functions, {bi},

such that distinct functions in B are orthogonal w.r.t 0

((bi, bj) = 0). For the purpose of approximating g, let
us require f to be a weighted sum of basis functions.

That is, f = _i aibi, where the ai's are real numbers.

1 I.e., set the function to 0 outside the subvolume.



Then, as is known from Fourier theory, f is an optimal

approximation, in the sense that IIg- fll is minimized,

if and only if

(g -f, bi) = 0 for all bi E ]3

An important property resulting from this is that the

coefficients of f are given by ai (scaled) or Ai (unscaled):

_(L_,h)_ Ai = {g, bi)
ai --_ {bi,b, I

3.3 Divide-and-Conquer Approximation

We are interested in deriving an optimal approximation

f to a given function g and error bounds (w.r.t. an

inner product ()), over the rectilinear k-D volume V.

We seek an expression for f in terms of the optimal

approximation and error bounds for a left (VL) and right

(Vn) subvolume partitioning V in dimension J.
By using the divide-and-conquer approach, we will be

able to compute the optimal coefficients and errors of

approximation for all nodes in the tree in constant time

per node, and with only one pass through the data. _

Let V be the closed k-D interval [-½w, 1-w]2(i.e., the
volume is centered). Let the width wj = wz+wR, where

WL > 0 and wn > 0. Define

Let VL, VR be the k-D intervals [(Xmin)L, (Xrnax)L] and

[(xmi,)R,(xm_)n], respectively. In dimension j, the
only one partitioned, the center of VL is at --wR/2, and

the center of 'JR is at .-bWL/2.

The desired approximation f over V will use the
basis set B. The approximations over VL and 'JR are

in basis sets ]3L and ]3R, which we assume are closely

related to ]3, but apply to their respective domains. Let
b (L) denote basis function b E ]3L, expressed in the

coordinate system of V. Also, denote the restriction

of a function b to a subvolume VL by blL; that is, blL

is equal to b in VL and is zero outside VL. Use similar
notations for R.

Example 3.1: Consider a 2-D "volume" V with w =

(11,4) and j = 1 (see Figure 2). Let the set of basis
functions be ]3 = {1, x,y, xy). Suppose the desired

partition is WL = 8 and wR = 3. The centroid of VL in
the coordinate system of V is at (-1.5, 0). BL is similar.

Then we have:

1(L) =. llL 1(R) = IlR

x (L) = XlL+I.51L x (R) = xlR-41s
y(L) ---- YlL y(R) = YlR

xy (L) = xylL+ 1.5y[L xy (n) = zYln-4Yln

2The computation is also more accurate numerically than

summing in a "for loop" through the data.

Figure 2: Basis function x for V, VL and 'JR in

Example 3.1.

Root

Height 2

Height 1

Figure 3: The BON strategy on an llx4 2D
"volume". Solid lines show how nodes subdivide.

Dashed lines are voxel or cell boundaries.

Observe that equations for {llL, XlL, YlL, Xy]L} can be
solved quickly in terms of {1 (L), x (L), y(L), xy(L)}. The

idea extends to any number of dimensions. []

(A,)The optimal approximation is f = _. bi.

To find Ai, decompose g into glL +glR, the restrictions

to VL and VR.

A, = OIL, bl) + (glR, b,) = (glL, bilL) + (glR, bilR)

But bill is a linear combination of certain b(L), and

bi[n is a linear combination of certain b_R). We will

recursively derive optimal approximations fL to glL and

In to aIR. Therefore,

(AL)n = (glL,b (L)) and (mR)n = (g[R,b (R))

are known when the two subproblems are completed.

These values can be used to compute the Ai. The



generaldescriptionabovewill nowbe illustratedfor
somecommonbasissets.

Example3.2: For the voxelmeanmodel,thebasis
set B consists of just the constant function, 1, with

one unsealed coefficient, A = AL + An. (This case is

essentially the one considered by Laur and Hanrahan,

using the voxel model [LH91].) The scaled coefficient is
the (possibly weighted) mean value of g, and is given by

AL -FAR (I[L, llL)aL + (1]R, IlR)aR
a --

(1,1) (1,1)

[]

Example 3.3: Continuing with Example 3.1, assume

the indexing: b0 = 1, bl = x, b2 = y, b3 -- xy. Here

j = l, so bi is linear in x when i is odd. Then we find
that

Ao = (mL)o + (AR)o
A2 = (AL)2 + (AR)2
A1 = (AL), + (AR)I -- 1.5(AL)0 + 4(AR)0
A3 = (AL)3 + (An)s - 1.5(AL)_ + 4(AR)2

[]

Now the error in the approximation, e 2 d___er(g _ f, g _ f),

over the volume V, is computable as follows:

(g,g) = (glL,glL) + (glR,glR)
(I, I) = E,

e2 = (g,g) -- (f, f)

To summarize, in each subproblem, VL and VR, we

compute {Ai} and (g,g), then use those results to

compute these quantities for V. To decompose in
several j directions, we decompose in one after the

other, recursively. At the bottom level, these quantities

are computed directly from the data.

4 Implementation of the Hierarchy

Our hierarchical method uses a flexible k-dimensional

tree that encodes structural information about the tree,

model information describing the data within the re-

gion, and evaluation information to control compression

and image quality.

4.1 Structural Information

The hierarchy design is an extension to higher dimen-

sions of the BON octree strategy, described elsewhere

[WVG92]. As shown there, this strategy can achieve sig-
nificant savings when the grid resolutions are unequal,

or are not powers of 2; higher dimensions tend to create

greater savings. Figure 3 illustrates the main idea in
2D. Our implementation handles up to 8 dimensions,

but we have only used 3- and 4-dimensional data sets.

Two types of structural information are stored within

the tree. The first is a pointer to the first child of this

node. Sibling tree nodes are contiguous, so one pointer
suffices for all. Nodes on height 1 point to the first child
in the data. If the children of a node are discarded

due to compression, that node's child pointer is set to

zero. The second type of structural information is the

branching pattern, stored as a bit vector.

4.2 Model Information

The model information within each node represents

the data beneath that node, either exactly or approxi-

mately. In general, the approximation is closest near the
bottom of the tree, and gets worse higher up. We have

experimented with three data models described below.

4.2.1 The Voxel Mean Model

The mean model is a simple voxel model. Each node

stores one value representing the average of the data

values of all points beneath it. While succinct, the

model may show discontinuities in imaging where these

regions meet, even when drawn at the deepest voxel
level. 3 The spatial cost of storing the mean is one

floating point value. For 3D data, there are about n/7
nodes for n data points; for 4D, the figure is about n/15.

The model is easily compressed by truncating the tree

and discarding data in its region where desired.

We initially implemented the mean model using Haar

wavelets [Chu92], in which the tree becomes a complete

representatio n and the data is discarded. However, the
details functions (7 coefficients in 3D and 15 in 4D)
need to be combined to recover the means during tree

traversal. As the cost of explicitly storing the mean is

only 1/7 the size of the data, we opted for simplicity.

4.2.2 The Voxel Trilinear Model

The voxel trilinear model stores a trilinear function at

each node that best fits the data values represented by

the node. The trilinear on height one of the tree fits

the data points exactly, so the data can be discarded

and regenerated as needed from the trilinear coefficients.
This model uses the same amount of space as the

mean model for data and model combined (8n/7 in

3D, 16n/15 in 4D), and sometimes provides a better
approximation of the data at higher levels of the tree.

4.2.3 The Cell Trilinear Model

In this standard cell model, data points lie at the corners

of cells and are shared between neighboring cells. At

height one, a node covers (up to) a 2k array of cells. The

pointer refers to the minimum data point of this array.
For 3D data, these 8 cells contain 27 data points. The

3Splatting ameliorates discontinuities, but introduces other
rendering inaccuracies involving opacity [LH91].



datapointsalongtheexteriorsofthesecellsareshared
byneighboringcells.Assumingatrilinearfunctionover
thecellregions,thedatafieldiscontinuous,sorendering
atthedeepestlevelcanprovideamorecontinousimage
thanthepreviousmethods.

Withoutcompression,thespatialcostofthismodel,
assumingfloatingpoint 3D data, is the sizeof the
originaldatan plus approximately n/7 nodes each of
which contains 8 trilinear coefficients, or 15n/7. In

many cases this extra spatial cost may not prohibitive.

Data compression is more complex for a cell model,
because the data is shared between nodal regions.

One solution is to separate the data into smaller

grids with redundant data points along the boundaries.
For example, for a full 3D tree, each height 1 node

could point to a cluster of 27 data points. In

such a representation, the data level would contain

approximately 27n/8 data points, rather than n points,

and the tree contains n/7 nodes. Larger clusters of 125

yield 125n/64 data and n/56 tree nodes. But each tree
node contains as many coefficients as needed by the

model. To achieve compression, a substantial fraction
of clusters need to be diseardable.

4.2.4 Continuity Issues

In choosing a model, one can give priority either to
continuity between regions or to a best fit of the

data over the defined region. We chose the latter, as

being a more appropriate representation for scientific
data. However, for some purposes, one might prefer a

model that minimizes discontinuity along boundaries.

However, even if continuity between regions on a

particular hierarchy level is maintained, when imaging
is done on different tree levels, discontinuities will result.

4.3 Evaluation Information

The two types of evaluation information stored in the
hierarchy are nodal error and data importance.

4.3.1 Nodal Error

The nodal error is an average deviation of the model

(f(p)) from the data (g(p)) within the region V (with

IVI data points) covered by the node. In the Lq norm,

the equation is:

l

e = Ig(P) - .f(P)l q
V

For q = 2 (see Section 3.3), e can be computed from

(g, g) and the coefficients of f; also, either a sum or an
integral can be used. For q # 2, each node's e must

be computed from scratch. 4 Experimental evidence,

4except q = oo, the max-norm

discussed later, suggests values of q much higher than 2

may give superior images for the same compression.

4.3.2 Data Importance

The second evaluation metric is data importance. In

many data sets, different data values and/or different

regions have different interest levels. For example,

the air surrounding a CT scan may be considered

unimportant, or certain values in a simulation may
be known to represent background. Initially all data

is given importance 1. Using an interactive transfer

function editor, the user can design an importance

function giving each data value an importance between
0 and 1. At each tree node the maximum importance

of any data point in its region is stored (in one byte).

5 Selective Traversal

Once the tree has been created, the user can selectively

traverse it either for imaging or for data compression.

A number of evaluation parameters are used to control

the traversal, most of which are calculated on the fly
not stored in the tree. Left in their default state, the

parameters have no effect and traversal continues until
a node with no error is found. The user-controlled

evaluation parameters are:

1. Model Error Threshold: The user sets an allowed

error between zero and one, which is multiplied by
the data set's standard deviation. Nodes with nodal

error (possibly modified below) at or below this
threshold are rendered as single objects.

2. Data Importance: If data importance is activated,
the node's nodal error is multiplied by its importance

before being compared to the threshold.

3. Pixel Coverage Weighting: The user can define

a pixel coverage value such that any node that
projects to less than the coverage is given reduced

importance.

4. Region Restrict: The user can interactively restrict

traversal to a rectangular 3D region.

5. Dimension Restrict: For data with greater than

three dimensions, the user can define which three
should be used for imaging, as well as the constant

values for the dimensions not imaged.

6. Tree Depth: The user may specify a depth in the
tree such that traversal never goes deeper.

7. Allowed Time: This option is somewhat orthogonal

to the above. If set, the system calculates the

deepest level that, using a rendering cost estimate,
can be rendered in the allowed time.



8. Clipping: When traversing for visualization, if the

nodal region is not visible, the traversal returns

immediately.

The evaluation metrics defined above are checked at

each node of the tree during selective traversal to
determine whether traversal should descend further or

return. If traversal stops and imaging is requested, the

region is drawn. If traversal is for compression, this
node becomes a leaf; its child pointer is set zero, and
the rest of the subtree is discarded.

5.1 Selective Traversal for Visualization or

Compression

Selective traversal makes it possible to replace the

data with a hierarchical representation that adequately

represents it. In many cases, this representation is
smaller than the original data set, because some data

values or regions are of no importance, because the

data values in some regions are constant or otherwise

modeled very accurately, or because some amount of

error compared to the original data is tolerated. In

these cases, the tree representation can be written out
and used in future to represent the data.

When selective traversal is used for imaging, the user

will often allow much greater error, in the interest of

speed, than she would as a permanent data represen-
tation. For such a use, the hierarchy must be retained

because future more accurate images may require it.

6 Rendering Methods

Our hierarchical approach is not restricted to any partic-

ular rendering method. The implementation performs

direct volume rendering using the coherent projection

approach [WVG91]. This method calculates informa-
tion concerning the projection of a rectilinear cell and

uses hardware Gouraud-shading for rapid rendering. It

is generally used with orthogonal projection on rectilin-
ear cells. While the method does not produce the high-

est quality images, it does produce quite good images

rapidly. We recently added a new rendering methods

using 3D texture map facilities; this is described else-
where [WGW94].

Consider renderings with no compression on a 3D

volume of resolutions (rx, ry, rz), with n = rxryrz. For
the voxel mean model, one constant value region drawn

for each data point. The voxel and cell trilinear models

treat the projected region as a trilinear function, which

is evaluated at region corners. Voxel trilinear draws

about n/8 cells, most covering 8 voxels. Cell trilinear

draws (r_ - 1) * (ru - 1) * (r_ - 1) cells. Constant value
coherent projection is approximately twice as fast as
when corner values vary, due to reduced amounts of

interpolation.

Level RME2 MAE

0 =0 =0
1 <3 <10
2 <6 <20
3 <9 <30
4 < 12 < 40

Subjective Description
Standard image; no error

Nearly indistinguishable
Very subtle differences

Slight differences
Clearer differences

Table 1: Error levels quantified and described. (The
differences for levels 1 to 4 are compared to standard.)

We preferred coherent projection to splatting [Wes90,

LH91] because region projections fit more continuously.

Higher-quality rendering methods, including ray-casting
or software projection methods, could be used with the

hierarchical approach as well.

It should be pointed out that the evaluation param-
eters, except for coverage, do not take into account

imaging issues, such as transfer function mappings, or
discontinuity between neighbor regions. The hierar-
chical model could accommodate a more image-based

metric, should this be considered more important.

7 Error Analysis

Two related issues must be considered in examining the

hierarchical approach, or any visualization method. The

first is the validity of the representation compared to

the actual data being used. The second is the quality

of the image, a more difficult thing to measure. Our
basic metric for data validity is the nodal error, possibly

weighted during traversal by parameters described

previously.
Our metric for image quality is the closeness of

the resultant image with some weighted error to a

s_andard image produced by the same visualization

method allowing no error. The visualization methods
are constant-value coherent projection for the mean

voxel model and varying-field coherent projection for
the trilinear models.

In judging image quality we attempt to quantify

what is partly a subjective evaluation. To do so,
we have examined five error levels determined by the

variations from the standard image. The five error

levels are quantified by their root mean squared image

errors (RME2), and their absolute maximum image
error (MAE) compared to the standard image. By

image error, we mean pixel-by-pixel color difference
between the standard image and the image with error,

scaled to the range 0-255, counting only non-black

pixels. Difference images show the absolute value of

the difference between two images.

The five levels, with subjective evaluations are shown

in Table 1. (The subjective evaluations refer to the



Data[Type]
Hipiph[q
Sod[b]
P6985 If]
Dolphin [s]
CTHalf [s]
Mandelbrot If]

CTHead [s]

Radm Ill
Heart [s]

Resolution Samples StdDev

64x64x64 262,144 .01845
97x97xl16 1,091,444 15.62
244x91x64 1,421,056 .004208

320x320x40 4,096,000 612.3

251x512xl13 14,521,856 612.6
256x256x256 16,777,216 443.98

512x512xl13 29,622,272 564.1

1,134,56729x69x63x9 .001014

256x256x8x16 8,388,608 57.38

Table 2: Data Set Characteristics. Note Radm and

Heart are 40. ([f] = float, [s] = short, [b] = byte.)

worst case differences between images.) Images with

even greater error may be useful for quick positioning

and scanning. We were only interested in evaluations

that provided images with good information content.

We emphasis maximum absolute error as being an
important consideration in scientific data. For images

mainly of aesthetic value, the weighting for MAE could

probably be reduced with little ill effect.

8 Experimental Results

In our experiments, we explore the space and time costs

of using a hierarchy, how much this can be reduced

by lossless and lossy compression, and what evaluation
parameters provide a good balance between imaging

time and quality. We especially wished to explore ways
to quantify our results. Space limitations force this

description to be abbreviated (see [WG94]).
We used a selection of rectilinear 3D and 4D data

sets. S Table 2 shows characteristics of the data sets.

Statistics were run on a Silicon Graphics Reality Engine
II, with 64 megabytes of memory.

8.1 Space Usage

This section examines the spatial requirements of using
hierarchies, considering lossless and lossy representa-

tions. We assume, for ease of comparison, that all

our data was floating point (4 bytes). All mean nodes

require 16 bytes, and all trilinear nodes require 44 bytes.

s Hipip (High Potential Iron Protein) is from L. Noodleman and

D. Case, Scripps Clinic, La Jolla, Ca. Sod is an electron density

map of superoxide dismutase from D. McRee, Scripps Clinic, La

Jol]a, Ca. P6985 is CFD data from U. Rist at the University

of Stuttgart. Dolphin is a CT-scan of a dolphin head from T.

Cranford, UCSC. The CTHead and CTHalf (the sazne data set)
was from UNC. RADM is clJmate data from C. Landreth of NCSC

and R. Dennis of US EPA. The beating heart was CT data from

J. M. Pfaff of Tower Imaging and C. A. Morioka of Cedars-Sinai

Medical Center. The 3D Mandelbrot Set was created by Orion

Wilson of UCSC.

Thus, the voxel models without compression take 1.57
times the data size and the cell model takes 2.57 times

the data size on 3D data sets. Building the hierarchy on

4D data sets was always more space efficient than using
a series of 3D trees.

As Table ?? shows spatial usage, comparing the

size take by the tree and data after compression,

compared to the size of the original data alone. For
cell trilinear, the compressed version either retains

the entire data, or retains clusters of 27 data points,

whichever is smaller. In general, lossless compression

doesn't not allow much space savings, though on the

CT data the large homogeneous regions did allow
significant reduction. This was even more true when

we used obvious restriction and reduced importance, as

in the dolphin data set when we ignored the stabilizing

apparatus and centered on the data.

Allowing even 1% error generally reduced the spatial
usage considerably, and 5% even more. The one

exception was the Sod data set, which is highly varying

throughout.

8.2 Image Evaluation and Selective Traversal

For this exploration, we compared images generated

with varying amounts of error to those made with no

error for their particular data model. We found the cost

of traversing the tree was very small; i.e., if the image
is rendered directly from the data or by traversing the

tree to the deepest level, the cost was about the same.

Rendering with no error gave speedups commensurate
with the amount of homogeneity in the data. In all

cases, we found noticeable speedup (usually by two or

three times) between the image generated at "level 0"

(no error), compared to "level l" error, from which

it is virtually indistinguishable Section 7). In going
from level 0 to level 2 error, the speed-up was from

three to ten times, and images were generally nearly

indistinguishable again. Level 3 images, where more

differences begin to appear, saw speed-ups, compared

to level 0, of from four to twenty times. Even level

4 images are hard to distinguish from the standard on
many volumes, but can be drawn, usually, 10 to 50 times

faster. Quite reasonable images at greater error levels
can often be drawn hundreds of times faster.

We found the described levels of image difference

to be an interesting first step in quantifying image

quality, but don't feel it is really comprehensive. Other

characteristics, which we are not using to control

rendering, clearly play a major role in image quality.

For our final examination, we explored raising the

nodal error to higher exponents (Section 4.3.1), giving

greater relative weight to large errors. For a given user-
defined allowed error, about the same amount of the tree

is accessed but the regions chosen are different. With



larger exponents, resulting images often gave a better

representation of small, highly variant regions.

8.2.1 General Observations

In studying images from the different data models, we

found the voxel mean model generally more successful

than we expected. Sometimes (not always), in nearly

front-on views, discontinuities are obvious. Allowing

greater amounts of error, discontinuities between re-

gions were often less using the mean model than the

trilinear ones.

The voxel trilinear model could sometimes produces

images very close to the voxel mean model in much

less time, but it was inconsistent. Because the

trilinear function extrapolates the function over the

data points, it can cause irritating discontinuities

between neighboring regions when the extrapolations

do not match.

The cell trilinear model, because the image drawn

at the lowest level was continuous, did produce the

most consistently pleasing images. There was, though,

a commensurate cost in extra storage that might not

be worth it on large volumes where differences between

the images are often slight anyway. For scientific

applications, we still feel a good data model is better

than a good image.

9 Conclusions

We found that the hierarchical strategy was extremely

successful in providing a flexible imaging approach.

It provides a number of easy-to-use parameters that

control the image quality and speed in an intuitive

manner. Because the parameters are related to the

error compared to the original volume, they allow

users to control the accuracy of the image. While

hierarchies do not compress as well as other methods,

the compressed version can be used nearly as quickly

as the original data. Further, in many cases, users may

feel more confident than we did in using restriction and

importance to reduce the necessary data size.

We believe the hierarchical approach could be ex-

tremely helpful for irregularly sampled data sets. The

use of an error-controlled regular hierarchy avoids many

of the problems in imaging irregular regions, and if

many data points are clustered in small regions, this

regions can be given less weight when they project

to only a few pixels. We are presently exploring this

research issue in the context of curvilinear data sets.

Acknowledgements

Funds for the support of this study have been allocated by a

cooperative agreement with NASA-Ames Research Center,
Moffett Field, California, under Interchange No. NCA2-

430, and by the National Science Foundation, Grant Number

ASC-9102497, and Grant Number CDA-9115268.

References

[Cha93] Judy Challinger.

[Chu92]

[DFM87]

[FS93]

[GSCH93]

[Lev90]

[Lev92]

[LH91]

[Ma189]

[MM93]

[Mea82]

[Mur93]

[NH93]

[ST90]

[VGW93]

Scalable parallel volume ray-
casting for nonrectilinear computational grids.
In IEEE Parallel Visualization Workshop, Octo-
ber 1993.

C. K. Chui. An Introduction to Wavelets.

Academic Press, Inc., 1992.

Robert A. Drebin, Elliot K. Fishman, and Donna

Magid. Volumetric three-dimensional image

rendering: Thresholding vs. non-thresholding
techniques. Radiology, 165:131, 1987.

Thomas Funkhouser and Carlo Sequin. Adap-

tive display algorithm for interactive frame rates
during visualization of complex virtual environ-
ments. Computer Graphics (ACM Siggraph Pro-

ceedings), 27(4):247-254, August 1993.

Steven J. Gortler, Peter Schroeder, Michael F.

Cohen, and Pat Hanrahan. Wavelet radios-

ity. Computer Graphics (A CM Siggraph Proceed-

ings), 27(4):221-230, August 1993.

Marc Levoy. Efficient ray tracing of volume data.

ACM Transactions on Graphics, 9(3):245-261,

July 1990.

Marc Levoy. Volume rendering using the fourier

projection-slice theorem. In Proceedings of

Graphics Interface '92, Vancouver, B.C., 1992.
Also Stanford University Technical Report CSL-
TR-92-521.

David Laur and Pat Hanrahan. Hierarchical

splatting: A progressive refinement algorithm for
volume rendering. Computer Graphics (ACM
Siggraph Proceedings), 25(4):285-288, July 1991.

S. G. Mallat. A theory for multiresolution sig-

nal decomposition: The wavelet representation.

IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 11(7):674-693, 1989.

Tom Malzbender. Fourier volume rendering.

ACM Transactions on Graphics, 12(3):233-250,

July 1993.

Donald J. Meagher. Geometric modeling using
octree encoding. Computer Graphics and Image

Processing, 19:129-147, 1982.

Shigeru Muraki. Volume data and wavelet trans-
forms. IEEE Computer Graphics and Applica-

tions, 13(4):50-56, July 1993.

Paul Ning and Lambertus Hesselink. Vector

quantization for volume rendering. In Visualiza-
tion '93, San Jose, Ca, October 1993. IEEE.

Peter Shirley and Allan q-hchman. A polygonal

approximation to direct scalar volume render-

ing. Computer Graphics, 24(5):63-70, December
1990.

Allen Van Gelder and Jane Wflhelms. Rapid

exploration of curvilinear grids using direct vol-
ume rendering. In Visualization 93 Conference,

San Jose, CA, October 1993. IEEE. (extended

abstract) Also, University of California technical

report UCSC-CRL-93-02.



[Wes90]

[WG94]

[WGW94]

[Wi192]

[WVG91]

[WVG92]

Lee Westover. Footprint evaluation for volume
rendering. Computer Graphics, 24(4):367-76,

August 1990.

Jane Wilhelms and Allen Van Gelder. Multi-

dimensional trees for controlled volume rendering

and compression. Technical Report UCSC-CRL-

94-02, CIS Board, University of California, Santa
Cruz, January 1994. submitted for publication.

Orion Wilson, Allen Van Gelder, and Jane
Wilhelms. Direct volume rendering via 3d

textures. Technical Report UCSC-CRL-94-19,

CIS Board, University of California, Santa Cruz,

1994. (submitted for publication).

Peter Williams. Interactive splatting of nonrec-

tilinear volumes. In Visualization '92, pages 37-

44. IEEE, October 1992.

Jane Wilhelms and Allen Van Gelder. A coher-

ent projection approach for direct volume ren-

dering. Computer Graphics (Proceedings ACM

Siggraph), 25(4):275-284, 1991.

Jane Wilhelms and Allen Van Gelder. Octrees

for faster isosurface generation. ACM Trans-

actions on Graphics, 11(3):201-227, July 1992.
Extended abstract in ACM Computer Graphics

24(5) 57-62; also UCSC technical report UCSC-
CRL-90-28.


